下面是一个解决ArUco码位姿估计问题的示例代码,使用了OpenCV的solvePnP函数:
import cv2
import numpy as np
# ArUco参数
aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_4X4_250)
parameters = cv2.aruco.DetectorParameters_create()
# 获取ArUco码角点和ID
def get_aruco_corners(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
corners, ids, _ = cv2.aruco.detectMarkers(gray, aruco_dict, parameters=parameters)
return corners, ids
# 3D目标点坐标
target_points_3d = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], dtype=np.float32)
# 相机内参
camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
dist_coeffs = np.zeros((4,1), dtype=np.float32) # 如果有畸变系数,填入实际值
# 读取图像
image = cv2.imread('image.jpg')
# 检测ArUco码
corners, ids = get_aruco_corners(image)
# 位姿估计
if len(ids) > 0:
rvec, tvec, _ = cv2.aruco.estimatePoseSingleMarkers(corners, 0.1, camera_matrix, dist_coeffs)
for i in range(len(ids)):
# 绘制坐标系
cv2.aruco.drawAxis(image, camera_matrix, dist_coeffs, rvec[i], tvec[i], 0.1)
# 绘制边界框
cv2.aruco.drawDetectedMarkers(image, corners)
# 通过solvePnP获取位姿
_, rvec, tvec = cv2.solvePnP(target_points_3d, corners[i], camera_matrix, dist_coeffs)
print('ID:', ids[i][0])
print('Rotation Vector:')
print(rvec)
print('Translation Vector:')
print(tvec)
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
请注意,您需要根据实际情况调整相机内参(fx,fy,cx,cy)和ArUco码的大小(0.1)。您还需要正确安装OpenCV库并导入所需的模块。