AVRO支持模式演化,可以在保证向后兼容性的情况下修改数据模式。AVRO支持两种模式演化方式:
向后兼容性:旧的数据仍然可以被新的模式解析,不需要修改代码。
向前兼容性:新的数据可以被旧的模式解析,不需要修改代码。
以下是一个示例代码,演示如何进行向后兼容性的演化:
import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter
# 定义旧的数据模式
old_schema = '''{
"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": "int"}
]
}'''
# 定义新的数据模式,新增字段 address
new_schema = '''{
"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": "int"},
{"name": "address", "type": "string", "default": ""}
]
}'''
# 将旧的数据写入文件
writer = DataFileWriter(open("users.avro", "wb"), DatumWriter(), avro.schema.parse(old_schema))
writer.append({"name": "Tom", "age": 25})
writer.close()
# 读取旧的数据文件并将其转换为新的模式
reader = DataFileReader(open("users.avro", "rb"), DatumReader())
writer = DataFileWriter(open("users_new.avro", "wb"), DatumWriter(), avro.schema.parse(new_schema))
for user in reader:
new_user = {"name": user["name"], "age": user["age"], "address": ""}
writer.append(new_user)
reader.close()