假设有一个包含制造商、型号和价格的数据集,可以按照以下步骤解决该问题:
import pandas as pd
# 假设数据集命名为df,包含制造商(manufacturer)、型号(model)和价格(price)三列
# 按照制造商进行分组,计算每个制造商的销量总和
manufacturer_sales = df.groupby('manufacturer')['price'].sum()
# 按照销量降序排列,取前五个制造商
top_manufacturers = manufacturer_sales.nlargest(5).index.tolist()
average_prices = df[df['manufacturer'].isin(top_manufacturers)].groupby(['manufacturer', 'model'])['price'].mean().reset_index()
sorted_average_prices = average_prices.sort_values('price')
完整代码示例:
import pandas as pd
# 假设数据集命名为df,包含制造商(manufacturer)、型号(model)和价格(price)三列
# 按照制造商进行分组,计算每个制造商的销量总和
manufacturer_sales = df.groupby('manufacturer')['price'].sum()
# 按照销量降序排列,取前五个制造商
top_manufacturers = manufacturer_sales.nlargest(5).index.tolist()
# 对于每个制造商,找出其每个型号的平均价格
average_prices = df[df['manufacturer'].isin(top_manufacturers)].groupby(['manufacturer', 'model'])['price'].mean().reset_index()
# 按照平均价格排序
sorted_average_prices = average_prices.sort_values('price')
print(sorted_average_prices)
请注意,上述代码中的df是一个Pandas DataFrame对象,需要根据实际数据集进行相应的调整。