要监控AWS EMR Spark日志的成本,可以使用AWS CloudWatch来收集和分析日志数据。以下是一个解决方法,包含代码示例:
import boto3
# 创建CloudWatch日志组
log_group_name = 'emr-spark-logs'
client = boto3.client('logs')
response = client.create_log_group(logGroupName=log_group_name)
# 创建CloudWatch日志流
log_stream_name = 'emr-spark-log-stream'
response = client.create_log_stream(logGroupName=log_group_name, logStreamName=log_stream_name)
cluster_id = 'your-emr-cluster-id'
emr_client = boto3.client('emr')
# 获取现有的EMR集群配置
response = emr_client.describe_cluster(ClusterId=cluster_id)
cluster_config = response['Cluster']
# 更新EMR集群配置以发送Spark日志到CloudWatch
cluster_config['LogUri'] = 's3://your-bucket/emr-logs'
cluster_config['VisibleToAllUsers'] = True
cluster_config['KeepJobFlowAliveWhenNoSteps'] = False
cluster_config['Configurations'].append({
'Classification': 'spark',
'Properties': {
'spark.history.fs.logDirectory': 's3://your-bucket/emr-spark-logs'
}
})
# 更新EMR集群配置
response = emr_client.modify_cluster(ClusterId=cluster_id, Instances=cluster_config['Instances'])
# 创建CloudWatch日志指标过滤器
filter_pattern = 'ERROR'
metric_name = 'SparkErrorCount'
metric_namespace = 'EMR/Spark'
response = client.put_metric_filter(
logGroupName=log_group_name,
filterName='SparkErrorFilter',
filterPattern=filter_pattern,
metricTransformations=[
{
'metricName': metric_name,
'metricNamespace': metric_namespace,
'metricValue': '1'
}
]
)
# 创建CloudWatch警报
alarm_name = 'SparkErrorAlarm'
alarm_description = 'Spark error count exceeds threshold'
threshold = 10
response = client.put_metric_alarm(
AlarmName=alarm_name,
AlarmDescription=alarm_description,
ActionsEnabled=True,
AlarmActions=['arn:aws:sns:us-west-2:123456789012:my-sns-topic'],
MetricName=metric_name,
Namespace=metric_namespace,
Statistic='SampleCount',
ComparisonOperator='GreaterThanThreshold',
Threshold=threshold,
Period=60,
EvaluationPeriods=1
)
通过以上步骤,您可以设置完整的AWS EMR Spark日志的成本监控解决方案,并使用CloudWatch来收集、分析和警报EMR Spark的日志数据。请根据您的具体需求进行修改和调整。