AWS Personalize是一种机器学习服务,可以根据用户的历史行为和偏好来提供个性化推荐。在项目属性中,我们可以设置以下几个重要的参数:
import boto3
personalize = boto3.client('personalize')
response = personalize.create_dataset_group(
name='my-dataset-group'
)
dataset_group_arn = response['datasetGroupArn']
response = personalize.create_dataset(
datasetType='USER',
datasetGroupArn=dataset_group_arn,
schemaArn='arn:aws:personalize:::schema/user',
name='my-user-dataset'
)
dataset_arn = response['datasetArn']
response = personalize.create_dataset_import_job(
jobName='my-import-job',
datasetArn=dataset_arn,
dataSource={
'dataLocation': 's3://my-bucket/my-data.csv'
}
)
import_job_arn = response['datasetImportJobArn']
response = personalize.create_solution(
datasetGroupArn=dataset_group_arn,
name='my-solution',
performAutoML=True
)
solution_arn = response['solutionArn']
response = personalize.create_solution_version(
solutionArn=solution_arn
)
solution_version_arn = response['solutionVersionArn']
以上是AWS Personalize的一些重要项目属性及其相应的代码示例。根据实际需求,可以根据这些示例进行修改和扩展。