要报告scikit-learn中DecisionTreeClassifier学习树的深度和叶子节点数量,可以按照以下步骤进行:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
data = load_iris()
X = data.data
y = data.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
depth = clf.get_depth()
print("学习树的深度:", depth)
leaves = clf.get_n_leaves()
print("叶子节点数量:", leaves)
完整的代码示例:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
data = load_iris()
X = data.data
y = data.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
depth = clf.get_depth()
print("学习树的深度:", depth)
leaves = clf.get_n_leaves()
print("叶子节点数量:", leaves)
希望这可以帮助到你!