保留分辨率的全卷积网络
创始人
2024-11-24 10:30:28
0

保留分辨率的全卷积网络(Fully Convolutional Network, FCN)是一种用于图像语义分割的神经网络模型。它可以将输入图像的每个像素映射到对应的语义类别,同时保留输入图像的分辨率。

以下是一个使用TensorFlow实现的保留分辨率的全卷积网络的示例代码:

import tensorflow as tf

def fcn_model(input_shape, num_classes):
    # 定义输入占位符
    input_tensor = tf.placeholder(tf.float32, shape=input_shape, name='input')
    
    # 定义网络结构
    conv1 = tf.layers.conv2d(inputs=input_tensor, filters=64, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv2 = tf.layers.conv2d(inputs=conv1, filters=64, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    pool1 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2))
    
    conv3 = tf.layers.conv2d(inputs=pool1, filters=128, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv4 = tf.layers.conv2d(inputs=conv3, filters=128, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    pool2 = tf.layers.max_pooling2d(inputs=conv4, pool_size=(2, 2), strides=(2, 2))
    
    conv5 = tf.layers.conv2d(inputs=pool2, filters=256, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv6 = tf.layers.conv2d(inputs=conv5, filters=256, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv7 = tf.layers.conv2d(inputs=conv6, filters=256, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    pool3 = tf.layers.max_pooling2d(inputs=conv7, pool_size=(2, 2), strides=(2, 2))
    
    conv8 = tf.layers.conv2d(inputs=pool3, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv9 = tf.layers.conv2d(inputs=conv8, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv10 = tf.layers.conv2d(inputs=conv9, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    pool4 = tf.layers.max_pooling2d(inputs=conv10, pool_size=(2, 2), strides=(2, 2))
    
    conv11 = tf.layers.conv2d(inputs=pool4, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv12 = tf.layers.conv2d(inputs=conv11, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    conv13 = tf.layers.conv2d(inputs=conv12, filters=512, kernel_size=(3, 3), activation=tf.nn.relu, padding='same')
    pool5 = tf.layers.max_pooling2d(inputs=conv13, pool_size=(2, 2), strides=(2, 2))
    
    # 上采样
    upconv1 = tf.layers.conv2d_transpose(inputs=pool5, filters=512, kernel_size=(3, 3), strides=(2, 2), padding='same')
    upconv2 = tf.layers.conv2d_transpose(inputs=upconv1, filters=256, kernel_size=(3, 3), strides=(2, 2), padding='same')
    upconv3 = tf.layers.conv2d_transpose(inputs=upconv2, filters=128, kernel_size=(3, 3), strides=(2, 2), padding='same')
    upconv4 = tf.layers.conv2d_transpose(inputs=upconv3, filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')
    
    # 最后一层卷积输出语义类别
    logits = tf.layers.conv2d(inputs=upconv4, filters=num_classes, kernel_size=(1, 1), padding='same')
    

相关内容

热门资讯

第五俱乐部(wepoke真的)... 第五俱乐部(wepoke真的)外挂透明挂辅助器(辅助挂)可靠技巧(有挂细节)-哔哩哔哩;实战中需综合...
五个检测!wpk怎么下载ios... 五个检测!wpk怎么下载ios(外挂被实锤)原来真的有挂(有挂实锤)-哔哩哔哩;支持2-10人实时对...
2个挂!德扑之星电脑版(数据解... 2个挂!德扑之星电脑版(数据解析)透视辅助(有挂分析)-哔哩哔哩关于德扑之星电脑的基本介绍、功能特点...
4修改器!白金岛放炮罚有挂吗(... 4修改器!白金岛放炮罚有挂吗(辅助挂)太坑了其实真的有挂(确实有挂)-哔哩哔哩是一款可以让一直输的玩...
3个规律!用ai外挂打德州有用... 3个规律!用ai外挂打德州有用(辅助机器人)透视(真的有挂)-哔哩哔哩这是由厦门游乐互动科技有限公司...
第3新版(德扑手机上)外挂透明... 第3新版(德扑手机上)外挂透明挂辅助APP(辅助挂)安装教程(有挂规律)-哔哩哔哩;wpk透视辅助官...
第4个助手!德扑ai软件(牌力... 第4个助手!德扑ai软件(牌力分析软件)辅助透视(有挂讲解)-哔哩哔哩1、玩家可以在德扑ai软件软件...
第九计算器!网易棋牌一直输为什... 第九计算器!网易棋牌一直输为什么(辅助挂)太坑了其实真的有挂(有挂解密)-哔哩哔哩1、任何德州ai辅...
第四个技巧!微扑克app(伙牌... 第四个技巧!微扑克app(伙牌技巧)透视辅助(的确有挂)-哔哩哔哩;wpk透视辅助官方版是专为公司和...
第6专用(德州免费)外挂透明挂... 1、第6专用(德州免费)外挂透明挂辅助神器(透视)德州论坛(有挂详情)-哔哩哔哩;详细教程。2、德州...