可以使用以下方法解决BatchNorm在预测时准确率下降的问题:
1.在使用 BatchNorm 时,确保在推理模式下调用 model.eval()方法或将 BatchNorm 层的 training 参数设置为 False:
# Set BatchNorm layer in evaluation mode
model.eval()
# If using BatchNorm layer in TensorFlow 2.x
tf.keras.layers.BatchNormalization(trainable=False)
2.在训练过程中先对模型进行预热,然后在进行验证时,使用缓存的平均值和方差:
# Set BatchNorm layer in training mode
model.train()
# Training Loop
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Forward Pass
...
# Warm-up BatchNorm layer
...
model.eval()
with torch.no_grad():
for data, targets in train_loader:
...
model.train()
# Validation Loop
with torch.no_grad():
for data, targets in val_loader:
...
3.使用自己的移动平均值和方差跟踪器,并在模型验证期间使用它们,而不是使用批次中的统计信息:
# Initialize running_mean and running_var tensors
running_mean = torch.zeros(num_features)
running_var = torch.zeros(num_features)
# Training Loop
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Forward Pass
...
# Update running_mean and running_var tensors
running_mean = momentum * running_mean + (1 - momentum) * torch.mean(x, dim=0)
running_var = momentum * running_var + (1 - momentum) * torch.var(x, dim=0)
# Assign running_mean and running_var to BatchNorm layer
model.bn.running_mean = running_mean
model.bn.running_var = running_var
# Validation Loop
with torch.no_grad():
for data, targets in