在TensorFlow 2.0中使用Beam Search解码器的示例代码如下:
import tensorflow as tf
from tensorflow.keras.layers import LSTM, Dense
# 定义Beam Search解码器
class BeamSearchDecoder(tf.keras.Model):
def __init__(self, output_size, beam_width):
super(BeamSearchDecoder, self).__init__()
self.output_size = output_size
self.beam_width = beam_width
self.lstm = LSTM(units=256, return_sequences=True, return_state=True)
self.dense = Dense(units=output_size)
def call(self, inputs, states):
hidden_states, cell_states = states
hidden_states = tf.tile(tf.expand_dims(hidden_states, axis=1), [1, self.beam_width, 1])
cell_states = tf.tile(tf.expand_dims(cell_states, axis=1), [1, self.beam_width, 1])
inputs = tf.tile(tf.expand_dims(inputs, axis=1), [1, self.beam_width, 1])
lstm_output, hidden_states, cell_states = self.lstm(inputs, initial_state=[hidden_states, cell_states])
output = self.dense(lstm_output)
return output, [hidden_states, cell_states]
def initialize_states(self, inputs):
hidden_states = tf.zeros(shape=(tf.shape(inputs)[0], 256))
cell_states = tf.zeros(shape=(tf.shape(inputs)[0], 256))
return [hidden_states, cell_states]
# 使用Beam Search解码器进行推断
def beam_search_inference(model, initial_inputs, beam_width, max_length):
inputs = tf.expand_dims(initial_inputs, axis=0)
states = model.initialize_states(inputs)
sequences = [[[], 0.0]]
for _ in range(max_length):
all_candidates = []
for sequence in sequences:
inputs = tf.expand_dims(sequence[0][-1], axis=0)
output, states = model(inputs, states)
probabilities = tf.nn.softmax(tf.squeeze(output, axis=0))
top_probabilities, top_indices = tf.math.top_k(probabilities, k=beam_width)
for i in range(beam_width):
candidate = [sequence[0] + [top_indices[i].numpy()], sequence[1] + tf.math.log(top_probabilities[i]).numpy()]
all_candidates.append(candidate)
ordered_candidates = sorted(all_candidates, key=lambda x: x[1], reverse=True)
sequences = ordered_candidates[:beam_width]
return sequences
# 示例用法
# 假设output_size为10,beam_width为3
decoder = BeamSearchDecoder(output_size=10, beam_width=3)
# 假设inputs为形状为(1, 20)的输入序列
inputs = tf.random.uniform(shape=(1, 20))
inference_result = beam_search_inference(decoder, inputs, beam_width=3, max_length=5)
print(inference_result)
这是一个简单的示例,演示了如何在TensorFlow 2.0中实现Beam Search解码器,并使用示例输入进行推断。在示例中,我们首先定义了一个BeamSearchDecoder
类作为解码器模型,并在其call
方法中实现了Beam Search解码逻辑。然后,我们定义了一个beam_search_inference
函数用于进行推断,函数接受解码器模型、初始输入、Beam宽度和最大长度作为参数,并返回Beam Search的结果。最后,我们展示了如何使用示例输入进行推断,并打印输出结果。