以下是一个使用贝叶斯IRT(Item Response Theory)进行参数推断的Pymc3代码示例:
import pymc3 as pm
import numpy as np
# 模拟数据
num_items = 10
num_students = 100
difficulty = np.random.randn(num_items) # 难度参数
discrimination = np.random.randn(num_items) # 区分度参数
ability = np.random.randn(num_students) # 学生能力参数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 生成观测数据
observed_data = np.zeros((num_students, num_items))
for i in range(num_students):
for j in range(num_items):
p_ij = sigmoid(discrimination[j] * (ability[i] - difficulty[j]))
observed_data[i, j] = np.random.binomial(1, p_ij)
# 构建模型
with pm.Model() as model:
# 难度参数的先验分布
difficulty_prior_mu = pm.Normal('difficulty_prior_mu', mu=0, sd=1)
difficulty_prior_sd = pm.HalfNormal('difficulty_prior_sd', sd=1)
difficulty = pm.Normal('difficulty', mu=difficulty_prior_mu, sd=difficulty_prior_sd, shape=num_items)
# 区分度参数的先验分布
discrimination_prior_mu = pm.Normal('discrimination_prior_mu', mu=0, sd=1)
discrimination_prior_sd = pm.HalfNormal('discrimination_prior_sd', sd=1)
discrimination = pm.Normal('discrimination', mu=discrimination_prior_mu, sd=discrimination_prior_sd, shape=num_items)
# 学生能力参数的先验分布
ability_prior_mu = pm.Normal('ability_prior_mu', mu=0, sd=1)
ability_prior_sd = pm.HalfNormal('ability_prior_sd', sd=1)
ability = pm.Normal('ability', mu=ability_prior_mu, sd=ability_prior_sd, shape=num_students)
# 生成观测数据的概率模型
for i in range(num_students):
for j in range(num_items):
p_ij = pm.math.sigmoid(discrimination[j] * (ability[i] - difficulty[j]))
pm.Bernoulli('observed_data_%d_%d' % (i, j), p=p_ij, observed=observed_data[i, j])
# 运行推断
trace = pm.sample(2000, tune=1000, target_accept=0.95)
# 输出参数估计结果
pm.summary(trace, var_names=['difficulty', 'discrimination', 'ability'])
在上述代码中,我们首先使用numpy
模拟了一些观测数据,然后使用Pymc3构建了一个贝叶斯IRT模型。模型中使用了正态分布作为参数的先验分布,并通过pm.Normal
函数定义了参数的随机变量。然后,使用pm.Bernoulli
函数定义了观测数据的概率模型。最后,使用pm.sample
函数运行了MCMC链,得到参数的后验分布。通过pm.summary
函数可以输出参数的估计结果。