此错误通常是由于使用RunnerMethod作为装饰器而不是实例化它作为类创建模型服务的实例对象所导致的。要解决这个问题,请确保在创建BentoService时实例化RunnerMethod类,并在它的实例对象上调用装饰器。以下是示例代码:
from bentoml import api, artifacts, env, BentoService
from bentoml.handlers import DataframeHandler
from bentoml.artifact import PickleArtifact
from bentoml.runner import RunnerMethod
@artifacts([PickleArtifact('model')])
@env(pip_dependencies=['scikit-learn'])
class MyService(BentoService):
# Instantiate RunnerMethod class
runner = RunnerMethod()
@api(DataframeHandler)
def predict(self, df):
result = self.artifacts.model.predict(df)
return result
# Call decorator on the RunnerMethod instance
MyService.runner.run_in_queue()
在这个例子中,RunnerMethod实例化为MyService的属性,并在实例上调用run_in_queue()。注意,runner方法也可包含传入的参数,例如线程数或队列数量。现在应该能够成功启动BentoML本地服务器。