要在BentoML模型中集成RabbitMQ消息代理,可以按照以下步骤进行操作:
pip install bentoml rabbitmq
import bentoml
from bentoml.adapters import JsonInput, JsonOutput
from bentoml.frameworks.sklearn import SklearnModelArtifact
@bentoml.env(pip_packages=['scikit-learn'])
@bentoml.artifacts([SklearnModelArtifact('model')])
class MyBentoService(bentoml.BentoService):
@bentoml.api(input=JsonInput(), output=JsonOutput())
def predict(self, input_data):
return self.artifacts.model.predict(input_data)
import bentoml
from bentoml.handlers import DataframeHandler
from bentoml.adapters import RabbitMQInput
from bentoml.frameworks.sklearn import SklearnModelArtifact
import pika
@bentoml.env(pip_packages=['scikit-learn', 'pika'])
@bentoml.artifacts([SklearnModelArtifact('model')])
class MyBentoService(bentoml.BentoService):
@bentoml.api(input=DataframeHandler(), output=JsonOutput())
def predict(self, df):
return self.artifacts.model.predict(df)
@bentoml.api(input=RabbitMQInput(), batch=False)
def predict_rabbitmq(self, msg):
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
# 在这里处理从RabbitMQ接收到的消息
result = self.predict(msg)
channel.basic_publish(exchange='',
routing_key='result_queue',
body=result)
connection.close()
请确保RabbitMQ服务已在本地运行,并且在predict_rabbitmq
方法中根据实际情况设置RabbitMQ连接参数和消息发布参数。
bento_service = MyBentoService()
bento_service.pack('model', model)
bento_service.save_to_dir('/path/to/save')
# 启动API服务
bento_service.start()
这样,你就可以通过调用BentoService的predict_rabbitmq
方法将消息发送到RabbitMQ,并在result_queue
中接收预测结果。