尝试使用不同的集成策略或优化方法,以提高BERT集成模型的性能。
具体实现方法可以使用以下代码:
import torch from transformers import BertModel
class BERTClassifier(torch.nn.Module): def init(self, num_classes): super().init() self.bert = BertModel.from_pretrained('bert-base-uncased') self.classifier = torch.nn.Linear(self.bert.pooler.dense.out_features, num_classes)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids, attention_mask=attention_mask)
pooled_output = outputs.pooler_output
logits = self.classifier(pooled_output)
return logits
class BERTEnsemble(torch.nn.Module): def init(self, num_models, num_classes): super().init() self.models = torch.nn.ModuleList([BERTClassifier(num_classes) for _ in range(num_models)])
def forward(self, input_ids, attention_mask):
logits = []
for model in self.models:
logits.append(model(input_ids, attention_mask))
logits = torch.stack(logits).mean(dim=0)
return logits
def train(model, train_loader, val_loader, num_epochs=10, learning_rate=1e-3): optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) criterion = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
train_loss = 0.0
train_accs = []
for batch in train_loader:
input_ids, attention_mask, labels = batch
optimizer.zero_grad()
logits = model(input_ids, attention_mask)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_accs.append(accuracy(logits, labels))
train_acc = torch.stack(train_accs).mean()
train_loss /= len(train_loader)
val_loss = 0.0
val_accs = []
for batch in val_loader:
input_ids