变分推断(Variational Inference,VI)是常用的贝叶斯推断方法,用于近似计算后验分布。在使用VI进行模型训练时,经常出现验证损失各种波动的问题,造成模型性能不稳定,甚至出现过拟合等问题。
解决该问题的思路主要包括以下两点:
from torch import nn
from torch.nn import functional as F
from torch import optim
class VariationalInference(nn.Module):
def __init__(self, mu, rho):
super(VariationalInference, self).__init__()
self.mu = mu
self.rho = rho
self.normal = torch.distributions.Normal(0, 1)
def forward(self, input):
epsilon = self.normal.sample(self.rho.shape).to(self.device)
sigma = torch.log1p(torch.exp(self.rho))
self.sample = self.mu + sigma * epsilon
kl_divergence = -0.5 * torch.sum(1 + self.rho - self.mu.pow(2) - self.rho.exp())
return self.sample, kl_divergence
# 训练过程中添加kl_divergence系数
kl_loss_coef = 0.1
for epoch in range(num_epochs):
for i, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# 变分推断
output, kl_divergence = model(data)
# 计算损失值
loss = criterion(output,