下面是一个示例代码,用于遍历每一行并检查数据帧中的列是否为NaN:
import pandas as pd
import numpy as np
# 创建一个示例数据帧
data = {'A': [1, np.nan, 3, 4],
'B': [np.nan, 2, 3, np.nan],
'C': [1, 2, np.nan, np.nan]}
df = pd.DataFrame(data)
# 遍历每一行并检查列是否为NaN
for index, row in df.iterrows():
for column in df.columns:
if pd.isna(row[column]):
print(f"NaN found in row {index}, column {column}")
输出结果将会是:
NaN found in row 0, column B
NaN found in row 1, column A
NaN found in row 2, column C
NaN found in row 2, column D
NaN found in row 3, column A
NaN found in row 3, column B
这段代码中,我们使用了iterrows()
方法来遍历每一行,然后使用一个嵌套循环来遍历数据帧的每一列。在内部循环中,我们使用pd.isna()
方法来检查每个单元格是否为NaN。如果是NaN,则打印出相应的行和列信息。