不使用神经网络的预训练词向量进行文本分类
创始人
2024-12-29 08:30:21
0

以下是一个使用机器学习算法(不使用神经网络)和预训练词向量进行文本分类的示例代码:

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score

# 定义训练数据
train_texts = ["I love this movie", "This movie is great", "I don't like this movie"]
train_labels = [1, 1, 0]

# 定义测试数据
test_texts = ["I enjoy watching movies", "This movie is terrible"]

# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 将训练文本转换为TF-IDF特征向量
train_features = vectorizer.fit_transform(train_texts)

# 将测试文本转换为TF-IDF特征向量
test_features = vectorizer.transform(test_texts)

# 创建支持向量机分类器
classifier = LinearSVC()

# 在训练数据上训练分类器
classifier.fit(train_features, train_labels)

# 对测试数据进行分类预测
predictions = classifier.predict(test_features)

# 打印预测结果
for text, label in zip(test_texts, predictions):
    print(f"Text: {text}  Label: {'Positive' if label == 1 else 'Negative'}")

在这个示例中,我们使用了sklearn库中的TfidfVectorizer来将文本数据转换为TF-IDF特征向量。然后,我们使用线性支持向量机(LinearSVC)作为分类器进行训练和预测。预测结果会打印出来,标记为正面或负面。

请注意,这个示例中并没有使用预训练的词向量模型,而是使用TF-IDF特征向量表示文本。这种方法在一些简单的文本分类任务上可能会有不错的效果,但对于更复杂的任务,使用预训练的词向量(例如Word2Vec、GloVe等)可能会更好。

相关内容

热门资讯

黑科技科技(wepoke智能a... 黑科技科技(wepoke智能ai)wepower使用说明书(wepOkE)素来是真的有挂(确实有挂)...
黑科技模拟器(wepoke智能... WePoker透视辅助工具核心要点解析‌,黑科技模拟器(wepoke智能ai)wepoke是机器发牌...
黑科技脚本(wepokeai代... 您好,这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在这款游戏中打牌都...
黑科技辅助挂(wepoke真的... 黑科技辅助挂(wepoke真的有挂)wepoke 软件(wEPOKE)固有真的有挂(有挂猫腻)-哔哩...
黑科技辅助挂(wepoke黑科... 黑科技辅助挂(wepoke黑科技)wepoke软件透明挂演示(wEpOke)一直真的有挂(真的有挂)...
黑科技app(wepoke真的... 此外,数据分析德州()辅助神器app还具备辅助透视行为开挂功能,通过对客户透明挂的深入研究,你可以了...
黑科技智能ai(wepoke辅... 黑科技智能ai(wepoke辅助插件)wepoke软件透明(WEPOke)先前是有挂(果真有挂)-哔...
黑科技模拟器(wepoke透明... 黑科技模拟器(wepoke透明黑科技)wepoke德州扑克用ai代打(WEPOKE)最初存在有挂(有...
黑科技插件(wepoke辅助插... 黑科技插件(wepoke辅助插件)wepoke软件透明(WEPOke)从来是真的有挂(有挂解惑)-哔...
黑科技美元局(wepoke智能... 黑科技美元局(wepoke智能ai)wepoke辅助真的假的(wepoKE)原先真的有挂(竟然有挂)...