要进行不同回归模型的R-功率模拟,可以使用以下步骤和代码示例:
library(ggplot2)
library(caret)
data(Concrete)
set.seed(123)
trainIndex <- createDataPartition(Concrete$Strength, p = 0.8, list = FALSE)
trainData <- Concrete[trainIndex, ]
testData <- Concrete[-trainIndex, ]
rp <- function (y, yhat) {
R2 <- cor(y, yhat)^2
power <- 1 - (1 - R2) * (length(y) - 1) / (length(y) - 2)
return(power)
}
lmModel <- train(Strength ~ ., data = trainData, method = "lm")
rfModel <- train(Strength ~ ., data = trainData, method = "rf")
gbmModel <- train(Strength ~ ., data = trainData, method = "gbm")
lmPredictions <- predict(lmModel, newdata = testData)
rfPredictions <- predict(rfModel, newdata = testData)
gbmPredictions <- predict(gbmModel, newdata = testData)
lmRPower <- rp(testData$Strength, lmPredictions)
rfRPower <- rp(testData$Strength, rfPredictions)
gbmRPower <- rp(testData$Strength, gbmPredictions)
print(paste("LM R-Power:", lmRPower))
print(paste("RF R-Power:", rfRPower))
print(paste("GBM R-Power:", gbmRPower))
这里使用了CARET包中的train函数来训练不同的回归模型(线性回归、随机森林和梯度提升机)。然后,使用预测值和真实值计算R-功率。最后,输出每个模型的R-功率结果。
上一篇:不同弧度的甜甜圈
下一篇:不同回归器的嵌套交叉验证用法