在时间序列上进行异常检测有许多方法,下面列举一些常用方法:
from sklearn.ensemble import IsolationForest
clf = IsolationForest(n_estimators=100, max_samples='auto', contamination=float(.12), max_features=1.0)
clf.fit(X)
# Predict anomaly scores
anomaly_scores = clf.decision_function(X)
# Predict anomaly labels
anomalies = clf.predict(X)
import tensorflow as tf
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(32, input_shape=(None, 1), return_sequences=True))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.LSTM(16))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam')
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(y, order=(3, 1, 0))
model_fit = model.fit(disp
上一篇:不同时间设置的多行文本
下一篇:不同时间序列数据的合并数据框