不支持层(当使用QAT训练的Keras模型进行训练时)。
创始人
2025-01-11 18:30:29
0

当使用QAT(Quantization-Aware Training)训练的Keras模型进行训练时,如果遇到不支持的层,可以通过以下方法进行解决:

  1. 定义自定义层:将不支持的层替换为自定义层,并在自定义层内部实现对应的功能。下面是一个示例,将不支持的tf.keras.layers.BatchNormalization替换为自定义层CustomBatchNormalization
import tensorflow as tf
from tensorflow.keras.layers import Layer

class CustomBatchNormalization(Layer):
    def __init__(self, momentum=0.99, epsilon=0.001, **kwargs):
        super(CustomBatchNormalization, self).__init__(**kwargs)
        self.momentum = momentum
        self.epsilon = epsilon

    def build(self, input_shape):
        self.gamma = self.add_weight(name='gamma', shape=(input_shape[-1],),
                                     initializer='ones', trainable=True)
        self.beta = self.add_weight(name='beta', shape=(input_shape[-1],),
                                    initializer='zeros', trainable=True)
        self.moving_mean = self.add_weight(name='moving_mean', shape=(input_shape[-1],),
                                           initializer='zeros', trainable=False)
        self.moving_variance = self.add_weight(name='moving_variance', shape=(input_shape[-1],),
                                               initializer='ones', trainable=False)

    def call(self, inputs, training=None):
        if training:
            mean, variance = tf.nn.moments(inputs, axes=[0])
            self.moving_mean.assign_sub((1 - self.momentum) * (self.moving_mean - mean))
            self.moving_variance.assign_sub((1 - self.momentum) * (self.moving_variance - variance))
            return tf.nn.batch_normalization(inputs, mean, variance, self.beta, self.gamma, self.epsilon)
        else:
            return tf.nn.batch_normalization(inputs, self.moving_mean, self.moving_variance, self.beta, self.gamma, self.epsilon)
  1. 冻结不支持的层:如果不支持的层不会对模型的输出产生影响,可以选择将其冻结,即在训练过程中不更新其权重。下面是一个示例,冻结tf.keras.layers.BatchNormalization层:
import tensorflow as tf
from tensorflow.keras.layers import BatchNormalization

model = tf.keras.Sequential([
    # ...
    BatchNormalization(trainable=False),
    # ...
])

这样,在QAT训练过程中,BatchNormalization层的权重将不会被更新。

通过上述方法,可以解决不支持层的问题,并继续使用QAT训练Keras模型。

相关内容

热门资讯

记者揭秘!智星菠萝辅助(透视辅... 记者揭秘!智星菠萝辅助(透视辅助)拱趴大菠萝辅助神器,扑克教程(有挂细节);模式供您选择,了解更新找...
一分钟揭秘!约局吧能能开挂(透... 一分钟揭秘!约局吧能能开挂(透视辅助)hhpoker辅助靠谱,2024新版教程(有挂教学);约局吧能...
透视辅助!wepoker模拟器... 透视辅助!wepoker模拟器哪个好用(脚本)hhpoker辅助挂是真的,科技教程(有挂技巧);囊括...
透视代打!hhpkoer辅助器... 透视代打!hhpkoer辅助器视频(辅助挂)pokemmo脚本辅助,2024新版教程(有挂教程);风...
透视了解!约局吧德州真的有透视... 透视了解!约局吧德州真的有透视挂(透视脚本)德州局HHpoker透视脚本,必胜教程(有挂分析);亲,...
六分钟了解!wepoker挂底... 六分钟了解!wepoker挂底牌(透视)德普之星开辅助,详细教程(有挂解密);德普之星开辅助是一种具...
9分钟了解!wpk私人辅助(透... 9分钟了解!wpk私人辅助(透视)hhpoker德州透视,插件教程(有挂教学);风靡全球的特色经典游...
推荐一款!wepoker究竟有... 推荐一款!wepoker究竟有透视(脚本)哈糖大菠萝开挂,介绍教程(有挂技术);囊括全国各种wepo...
每日必备!wepoker有人用... 每日必备!wepoker有人用过(脚本)wpk有那种辅助,线上教程(有挂规律);wepoker有人用...
玩家必备教程!wejoker私... 玩家必备教程!wejoker私人辅助软件(脚本)哈糖大菠萝可以开挂,可靠技巧(有挂神器)申哈糖大菠萝...