要解决在CIFAR-10数据集上准确率低的问题,可以考虑以下几个步骤:
import tensorflow as tf
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()
# 将像素值缩放到0-1范围内
train_images = train_images / 255.0
test_images = test_images / 255.0
# 进行标准化处理
mean = train_images.mean(axis=0)
std = train_images.std(axis=0)
train_images = (train_images - mean) / std
test_images = (test_images - mean) / std
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
# 调整学习率
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# 调整批次大小
model.fit(train_images, train_labels, batch_size=64, epochs=10, validation_data=(test_images, test_labels))
# 调整模型深度
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
通过以上步骤,你可以逐步提高在CIFAR-10数据集上的准确率。记得在训练过程中进行适当的调参和调试,以找到最佳的模型配置。