Apache Spark Streaming - reduceByKey、groupByKey、aggregateByKey或combineByKey?
创始人
2024-09-04 21:30:07
0

Apache Spark Streaming 提供了多个用于对数据进行聚合和处理的操作,其中包括 reduceByKey、groupByKey、aggregateByKey 和 combineByKey。这些操作都适用于键值对 (key-value) 形式的数据流。

下面是对每个操作的解释和代码示例:

  1. reduceByKey: reduceByKey 操作对相同键的值进行合并,并返回每个键对应的单个值。合并操作可以是任意的可交换和可关联的操作。
from pyspark.streaming import StreamingContext

# 创建 StreamingContext 对象
ssc = StreamingContext(sparkContext, batchDuration)

# 创建 DStream 对象
inputDStream = ssc.socketTextStream("localhost", 9999)

# 将 DStream 转换为键值对形式
keyValueDStream = inputDStream.map(lambda line: (line.split(" ")[0], int(line.split(" ")[1])))

# 对相同键的值进行合并
reducedDStream = keyValueDStream.reduceByKey(lambda a, b: a + b)

# 输出结果
reducedDStream.pprint()

# 启动 StreamingContext
ssc.start()
ssc.awaitTermination()
  1. groupByKey: groupByKey 操作将相同键的所有值组合在一起,返回每个键对应的值列表。
from pyspark.streaming import StreamingContext

# 创建 StreamingContext 对象
ssc = StreamingContext(sparkContext, batchDuration)

# 创建 DStream 对象
inputDStream = ssc.socketTextStream("localhost", 9999)

# 将 DStream 转换为键值对形式
keyValueDStream = inputDStream.map(lambda line: (line.split(" ")[0], int(line.split(" ")[1])))

# 将相同键的值组合在一起
groupedDStream = keyValueDStream.groupByKey()

# 输出结果
groupedDStream.pprint()

# 启动 StreamingContext
ssc.start()
ssc.awaitTermination()
  1. aggregateByKey: aggregateByKey 操作对每个键的值进行聚合,并返回每个键对应的聚合结果。它需要一个初始值和一个用户自定义的聚合函数。
from pyspark.streaming import StreamingContext

# 创建 StreamingContext 对象
ssc = StreamingContext(sparkContext, batchDuration)

# 创建 DStream 对象
inputDStream = ssc.socketTextStream("localhost", 9999)

# 将 DStream 转换为键值对形式
keyValueDStream = inputDStream.map(lambda line: (line.split(" ")[0], int(line.split(" ")[1])))

# 对每个键的值进行聚合
aggregatedDStream = keyValueDStream.aggregateByKey(0, lambda a, b: a + b, lambda a, b: a + b)

# 输出结果
aggregatedDStream.pprint()

# 启动 StreamingContext
ssc.start()
ssc.awaitTermination()
  1. combineByKey: combineByKey 操作对每个键的值进行聚合,并返回每个键对应的聚合结果。它需要三个用户自定义的函数:创建组合器函数、合并值函数和合并组合器函数。
from pyspark.streaming import StreamingContext

# 创建 StreamingContext 对象
ssc = StreamingContext(sparkContext, batchDuration)

# 创建 DStream 对象
inputDStream = ssc.socketTextStream("localhost", 9999)

# 将 DStream 转换为键值对形式
keyValueDStream = inputDStream.map(lambda line: (line.split(" ")[0], int(line.split(" ")[1])))

# 对每个键的值进行聚合
combinedDStream = keyValueDStream.combineByKey(
    lambda value: (value, 1),
    lambda acc, value: (acc[0] + value, acc[1] + 1),
    lambda acc1, acc2: (acc1[0] + acc2[0], acc1[1] + acc2[1])
)

# 输出结果
combinedDStream.pprint()

# 启动 StreamingContext
ssc.start()
ssc.awaitTermination()

以上是使用 Apache Spark Streaming 中的 reduceByKey、groupByKey、aggregateByKey 和 combineByKey 进行数据聚合和处理的示例代码。您可以根据自己的需求选择适合的操作。

相关内容

热门资讯

记者揭秘!智星菠萝辅助(透视辅... 记者揭秘!智星菠萝辅助(透视辅助)拱趴大菠萝辅助神器,扑克教程(有挂细节);模式供您选择,了解更新找...
一分钟揭秘!约局吧能能开挂(透... 一分钟揭秘!约局吧能能开挂(透视辅助)hhpoker辅助靠谱,2024新版教程(有挂教学);约局吧能...
透视辅助!wepoker模拟器... 透视辅助!wepoker模拟器哪个好用(脚本)hhpoker辅助挂是真的,科技教程(有挂技巧);囊括...
透视代打!hhpkoer辅助器... 透视代打!hhpkoer辅助器视频(辅助挂)pokemmo脚本辅助,2024新版教程(有挂教程);风...
透视了解!约局吧德州真的有透视... 透视了解!约局吧德州真的有透视挂(透视脚本)德州局HHpoker透视脚本,必胜教程(有挂分析);亲,...
六分钟了解!wepoker挂底... 六分钟了解!wepoker挂底牌(透视)德普之星开辅助,详细教程(有挂解密);德普之星开辅助是一种具...
9分钟了解!wpk私人辅助(透... 9分钟了解!wpk私人辅助(透视)hhpoker德州透视,插件教程(有挂教学);风靡全球的特色经典游...
推荐一款!wepoker究竟有... 推荐一款!wepoker究竟有透视(脚本)哈糖大菠萝开挂,介绍教程(有挂技术);囊括全国各种wepo...
每日必备!wepoker有人用... 每日必备!wepoker有人用过(脚本)wpk有那种辅助,线上教程(有挂规律);wepoker有人用...
玩家必备教程!wejoker私... 玩家必备教程!wejoker私人辅助软件(脚本)哈糖大菠萝可以开挂,可靠技巧(有挂神器)申哈糖大菠萝...