apache.avro和spark-avro from databricks之间的区别
创始人
2024-09-05 04:30:30
0

Apache Avro和Spark-Avro是两个不同的库,用于处理Avro数据格式。下面是它们之间的区别以及使用示例:

Apache Avro: Apache Avro是一个开源的数据序列化系统,用于将数据结构保存为二进制格式,并支持多种编程语言。它提供了一种紧凑的二进制数据格式,适用于大规模数据处理和高性能通信。下面是一个使用Apache Avro的示例:

// 导入Apache Avro库
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.*;

// 创建Avro模式
String schemaString = "{\"type\":\"record\",\"name\":\"myrecord\",\"fields\":[{\"name\":\"name\",\"type\":\"string\"},{\"name\":\"age\",\"type\":\"int\"}]}";
Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(schemaString);

// 创建Avro记录
GenericRecord record = new GenericData.Record(schema);
record.put("name", "John");
record.put("age", 30);

// 序列化Avro记录为二进制数据
ByteArrayOutputStream out = new ByteArrayOutputStream();
BinaryEncoder encoder = EncoderFactory.get().binaryEncoder(out, null);
DatumWriter writer = new GenericDatumWriter<>(schema);
writer.write(record, encoder);
encoder.flush();
out.close();
byte[] avroBytes = out.toByteArray();

// 反序列化Avro二进制数据为Avro记录
BinaryDecoder decoder = DecoderFactory.get().binaryDecoder(avroBytes, null);
DatumReader reader = new GenericDatumReader<>(schema);
GenericRecord decodedRecord = reader.read(null, decoder);

// 打印解析出的Avro记录
System.out.println(decodedRecord.get("name"));  // 输出: John
System.out.println(decodedRecord.get("age"));   // 输出: 30

Spark-Avro from Databricks: Spark-Avro是由Databricks开发的一个Spark库,用于将Avro数据与Spark一起使用。它提供了一些额外的功能和优化,以更好地集成和处理Avro数据。下面是一个使用Spark-Avro的示例:

// 导入Spark-Avro库
import org.apache.spark.sql.SparkSession

// 创建Spark会话
val spark = SparkSession.builder()
    .appName("Avro Example")
    .getOrCreate()

// 读取Avro数据
val avroDF = spark.read.format("com.databricks.spark.avro")
    .load("path/to/avro/file")

// 显示Avro数据
avroDF.show()

// 将DataFrame保存为Avro文件
avroDF.write.format("com.databricks.spark.avro")
    .save("path/to/save/avro/file")

以上代码示例中,我们使用了Apache Avro库来序列化和反序列化Avro数据,并使用Spark-Avro库将Avro数据加载到Spark中,并将DataFrame保存为Avro文件。

总结:

  • Apache Avro是一个独立的库,用于序列化和反序列化Avro数据。
  • Spark-Avro是一个Databricks开发的Spark库,用于与Spark集成和处理Avro数据。
  • Spark-Avro提供了更好的集成和优化,以提高Avro数据在Spark中的处理性能。
  • 使用Apache Avro时,需要手动编写Avro记录的序列化和反序列化代码。
  • 使用Spark-Avro时,可以直接使用Spark的DataFrame API来加载和保存Avro数据。

相关内容

热门资讯

记者揭秘!智星菠萝辅助(透视辅... 记者揭秘!智星菠萝辅助(透视辅助)拱趴大菠萝辅助神器,扑克教程(有挂细节);模式供您选择,了解更新找...
一分钟揭秘!约局吧能能开挂(透... 一分钟揭秘!约局吧能能开挂(透视辅助)hhpoker辅助靠谱,2024新版教程(有挂教学);约局吧能...
透视辅助!wepoker模拟器... 透视辅助!wepoker模拟器哪个好用(脚本)hhpoker辅助挂是真的,科技教程(有挂技巧);囊括...
透视代打!hhpkoer辅助器... 透视代打!hhpkoer辅助器视频(辅助挂)pokemmo脚本辅助,2024新版教程(有挂教程);风...
透视了解!约局吧德州真的有透视... 透视了解!约局吧德州真的有透视挂(透视脚本)德州局HHpoker透视脚本,必胜教程(有挂分析);亲,...
六分钟了解!wepoker挂底... 六分钟了解!wepoker挂底牌(透视)德普之星开辅助,详细教程(有挂解密);德普之星开辅助是一种具...
9分钟了解!wpk私人辅助(透... 9分钟了解!wpk私人辅助(透视)hhpoker德州透视,插件教程(有挂教学);风靡全球的特色经典游...
推荐一款!wepoker究竟有... 推荐一款!wepoker究竟有透视(脚本)哈糖大菠萝开挂,介绍教程(有挂技术);囊括全国各种wepo...
每日必备!wepoker有人用... 每日必备!wepoker有人用过(脚本)wpk有那种辅助,线上教程(有挂规律);wepoker有人用...
玩家必备教程!wejoker私... 玩家必备教程!wejoker私人辅助软件(脚本)哈糖大菠萝可以开挂,可靠技巧(有挂神器)申哈糖大菠萝...