可以使用Spark Streaming将流式数据处理为批处理数据,并将结果写入Kafka。以下是一个示例代码:
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkConf
object KafkaAvg {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("KafkaAvg")
val ssc = new StreamingContext(conf, Seconds(10))
val kafkaParams = Map[String, String]("metadata.broker.list" -> "localhost:9092")
val topics = Set("input_topic")
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topics)
val valueStream = kafkaStream.map(_._2.toDouble)
val countStream = valueStream.map((_, 1)).reduceByKey(_ + _)
val sumStream = valueStream.reduce(_ + _)
val avgStream = sumStream.transform(sum => countStream.map { case (value, count) => (value, sum / count) })
avgStream.print()
val avgProducer = new KafkaProducer[String, String](...
avgStream.foreachRDD(rdd => {
rdd.foreachPartition(partition => {
val results = partition.map(record => new ProducerRecord[String, String]("output_topic", record._1.toString(), record._2.toString()))
avgProducer.send(results.toList.asJava)
})
})
ssc.start()
ssc.awaitTermination()
}
}
此代码从输入主题中的Kafka读取流数据。然后,它使用Spark功能将值映射为双倍,并计算值的计数和总和。最后,它通过转换来计算平均值,并将结果写入新的Kafka主题中。
请注意,在这个示例中,我们使用了Apache Kafka标准Java客户端来操作Kafka主题。如果您需要使用其他Kafka客户端,请参阅相应的文档,以了解如何使用该客户端。