import gspread
from gspread_dataframe import set_with_dataframe
gc = gspread.service_account(filename="your_credentials.json")
sh = gc.open("your_spreadsheet")
worksheet = sh.worksheet("your_worksheet")
# 将数据转换为DataFrame对象
df = pd.DataFrame(your_data)
# 将DataFrame数据写入工作表
set_with_dataframe(worksheet, df)
import gspread
from gspread_dataframe import set_with_dataframe
gc = gspread.service_account(filename="your_credentials.json")
sh = gc.open("your_spreadsheet")
worksheet = sh.worksheet("your_worksheet")
# 分批次将数据添加到工作表
data = your_data
batch_size = 500 # 要添加的行数的大小,根据需要更改
header = ['column1', 'column2', ...]
# 添加表头
set_with_dataframe(worksheet, pd.DataFrame(columns=header))
# 按块添加数据
for i in range(0, len(data), batch_size):
batch = data[i:i+batch_size]
set_with_dataframe(worksheet, pd.DataFrame(batch), start=i+2, header=None)
# 调整列宽
for i, _ in enumerate(header):
worksheet.adjust_column_width(i + 1)
在分块添加数据时,通过调整变量batch_size
的大小来平衡添加数据的速度和网格限制。