ApplyHingeLoss&Low-RankPositiveslosswithGraphNeuralNetworkforRecommendationSystem
创始人
2024-09-11 06:00:38
0

在推荐系统中应用Hinge Loss和低秩正样本损失,结合图神经网络解决方案

推荐系统中的目标通常是根据用户过去的行为和反馈,预测他们未来的兴趣和需求,为他们推荐可能感兴趣的物品。在这种情况下,通常会使用矩阵分解或者神经网络进行建模,但是这些方法都存在一些弊端,如数据稀疏性问题和对标注数据的依赖性问题。因此我们需要一种新的方法来解决这些问题。

在这篇论文中,我们提出了一种使用图神经网络来处理推荐系统的方法,该方法结合了Hinge Loss和低秩正样本损失。具体的做法是,首先将用户和物品的关系表示为图,并为每个节点分配一个嵌入向量。接着使用图卷积神经网络来对节点嵌入进行聚合和更新。最后,使用Hinge Loss和低秩正样本损失对模型进行训练,以优化模型的预测准确度。

以下是使用DGL库实现该方法的代码示例:

import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F

class GraphConv(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GraphConv, self).__init__()
        self.linear = nn.Linear(in_feats, out_feats)

    def forward(self, g, feat):
        with g.local_scope():
            g.ndata['h'] = feat
            g.update_all(dgl.function.copy_src('h', 'm'), dgl.function.sum('m', 'h'))
            h = g.ndata['h']
            return self.linear(h)

class Model(nn.Module):
    def __init__(self, num_users, num_items, emb_size):
        super(Model, self).__init__()
        self.user_emb = nn.Embedding(num_users, emb_size)
        self.item_emb = nn.Embedding(num_items, emb_size)
        self.gcn = GraphConv(emb_size, emb_size)
        self.fc = nn.Linear(emb_size, 1)

    def forward(self, g, u, i):
        u, i = self.user_emb(u), self.item_emb(i)
        h = torch.cat([u, i], dim=0)
        h = self.gcn(g, h)
        u, i = h[:len(u)], h[len(u):]
        score = self.fc(u * i).sum(dim=1)
        return score

num_users, num_items, emb_size = 100, 1000, 64
g = dgl.graph([]) # 构造空的图
u = torch.LongTensor([0, 1, 5])
i = torch.LongTensor([100, 200, 876])
r = torch.FloatTensor([1., -1., 1.])
g.add_nodes(num_users + num_items)
g.add_edges(u, num_users + i)
g.edges[num_users + i].data['r'] = r
model = Model(num_users, num_items, emb_size)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
    score = model(g, u

相关内容

热门资讯

记者揭秘!智星菠萝辅助(透视辅... 记者揭秘!智星菠萝辅助(透视辅助)拱趴大菠萝辅助神器,扑克教程(有挂细节);模式供您选择,了解更新找...
一分钟揭秘!约局吧能能开挂(透... 一分钟揭秘!约局吧能能开挂(透视辅助)hhpoker辅助靠谱,2024新版教程(有挂教学);约局吧能...
透视辅助!wepoker模拟器... 透视辅助!wepoker模拟器哪个好用(脚本)hhpoker辅助挂是真的,科技教程(有挂技巧);囊括...
透视代打!hhpkoer辅助器... 透视代打!hhpkoer辅助器视频(辅助挂)pokemmo脚本辅助,2024新版教程(有挂教程);风...
透视了解!约局吧德州真的有透视... 透视了解!约局吧德州真的有透视挂(透视脚本)德州局HHpoker透视脚本,必胜教程(有挂分析);亲,...
六分钟了解!wepoker挂底... 六分钟了解!wepoker挂底牌(透视)德普之星开辅助,详细教程(有挂解密);德普之星开辅助是一种具...
9分钟了解!wpk私人辅助(透... 9分钟了解!wpk私人辅助(透视)hhpoker德州透视,插件教程(有挂教学);风靡全球的特色经典游...
推荐一款!wepoker究竟有... 推荐一款!wepoker究竟有透视(脚本)哈糖大菠萝开挂,介绍教程(有挂技术);囊括全国各种wepo...
每日必备!wepoker有人用... 每日必备!wepoker有人用过(脚本)wpk有那种辅助,线上教程(有挂规律);wepoker有人用...
玩家必备教程!wejoker私... 玩家必备教程!wejoker私人辅助软件(脚本)哈糖大菠萝可以开挂,可靠技巧(有挂神器)申哈糖大菠萝...