ARIMA(差分自回归移动平均模型)是一种常用的时间序列分析方法,但它存在一些问题,如:
针对ARIMA模型存在的这些问题,可以采用以下方法进行改进和解决:
示例代码如下:
from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.preprocessing import MinMaxScaler import numpy as np
data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(np.array(data).reshape(-1, 1))
train_size = int(len(data) * 0.7) test_size = len(data) - train_size train_data, test_data = data[0:train_size,:], data[train_size:len(data),:]
def create_dataset(dataset, look_back=1): datax, datay = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(