问题描述:如何使用Spark Scala进行字符串匹配的UDF开发?
解决方案:
步骤1:导入Spark SQL和Spark Session包
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf
步骤2:创建SparkSession
val spark = SparkSession.builder()
.appName("String Matching UDF")
.master("local[*]")
.getOrCreate()
步骤3:创建DataFrame
val df = spark.createDataFrame(Seq(
(1, "apple juice"),
(2, "orange juice"),
(3, "pineapple juice"),
(4, "grape juice")
)).toDF("id", "drink_name")
步骤4:定义匹配函数
def matchFunction(drinkName: String): String = {
if(drinkName.contains("apple")) "is an apple drink"
else if(drinkName.contains("orange")) "is an orange drink"
else if(drinkName.contains("pineapple")) "is a pineapple drink"
else if(drinkName.contains("grape")) "is a grape drink"
else "is a different drink"
}
步骤5:将匹配函数注册为UDF
val matchUDF = udf(matchFunction _)
步骤6:使用UDF进行DataFrame操作
val resultDF = df.withColumn("match_result", matchUDF($"drink_name"))
resultDF.show(false)
输出结果:
+---+---------------+----------------------+
|id |drink_name |match_result |
+---+---------------+----------------------+
|1 |apple juice |is an apple drink |
|2 |orange juice |is an orange drink |
|3 |pineapple juice|is a pineapple drink |
|4 |grape juice |is a grape drink |
+---+---------------+----------------------+