Attention机制中如何使用不同的层大小?
创始人
2024-09-21 21:30:50
0

我们可以使用PyTorch实现Attention机制,并设置不同的层大小。具体步骤如下:

1.首先,我们需要定义一个encoder类来处理输入数据,这里我们使用一个简单的BiLSTM模型来演示:

import torch.nn as nn

class Encoder(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers):
        super(Encoder, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        
    def forward(self, input):
        # input shape: (batch_size, seq_len, input_size)
        h0 = torch.zeros(self.num_layers*2, input.size(0), self.hidden_size).to(device) # initialize hidden state to 0
        c0 = torch.zeros(self.num_layers*2, input.size(0), self.hidden_size).to(device) # initialize cell state to 0
        output, (hidden, cell) = self.lstm(input, (h0, c0)) # output shape: (batch_size, seq_len, hidden_size*2)
        return hidden, cell

2.接下来,我们定义一个Attention类,该类接受encoder的输出作为输入,并返回加权后的encoder输出:

class Attention(nn.Module):
    def __init__(self, hidden_size, attention_size):
        super(Attention, self).__init__()
        self.hidden_size = hidden_size
        self.attention_size = attention_size
        self.fc1 = nn.Linear(hidden_size*2, attention_size, bias=False)
        self.fc2 = nn.Linear(attention_size, 1, bias=False)
        
    def forward(self, encoder_output, last_hidden):
        # encoder_output shape: (batch_size, seq_len, hidden_size*2)
        # last_hidden shape: (num_layers*2, batch_size, hidden_size)
        last_hidden.unsqueeze_(1) # last_hidden shape: (num_layers*2, 1, batch_size, hidden_size)
        last_hidden = last_hidden.repeat(1, encoder_output.size(1), 1, 1) # last_hidden shape: (num_layers*2, seq_len, batch_size, hidden_size)
        encoder_output = encoder_output.permute(2, 0, 1) # encoder_output shape: (hidden_szie*2, batch_size, seq_len)
        energy = torch.tanh(self.fc1(encoder_output) + self.fc1(last_hidden)) # energy shape: (attention_size, batch_size, seq_len)
        attention

相关内容

热门资讯

微扑克辅助软件!wepoke有... 微扑克辅助软件!wepoke有挂吗 网上,微扑克辅助器,科技教程(有挂黑科技)1.微扑克辅助软件 a...
wpk透视辅助工具!wpk有外... wpk透视辅助工具!wpk有外挂吗,(AAPOKEr)固有是有挂(详细透视AA德州教程);大神普及一...
德扑之星有猫腻!wepoke智... 德扑之星有猫腻!wepoke智能ai,(aAPOKER)确实真的是有挂(详细辅助高科技教程)需要回顾...
德州免费辅助神器app!wep... 德州免费辅助神器app!wepoke真的有挂嘛,(WEpoke)先前真的有挂(详细透视高科技教程)是...
aapoker俱乐部!微扑克软... aapoker俱乐部!微扑克软件发牌管理,(WEPOke)原本是真的有挂(详细透视详细教程);玩家必...
wpk外挂!aapoke辅助工... wpk外挂!aapoke辅助工具存在吗,(aaPOKER)一直真的有挂(详细辅助黑科技教程)wpk外...
wepoke模拟器!德扑快速计... wepoke模拟器!德扑快速计算胜率,(WepokE)好像存在有挂(详细透视详细教程)1、让任何用户...
智星德州菠萝偷偷看牌功能!wp... 智星德州菠萝偷偷看牌功能!wpk德州ai,(wePoke)固有真的是有挂(详细辅助技巧教程)是一款可...
德州之星外挂!智星德州菠萝有人... 德州之星外挂!智星德州菠萝有人机吗,(wepoker)一直有挂(详细透视wepoke教程);科技详细...
wpk发牌逻辑!wpk外挂是真... wpk发牌逻辑!wpk外挂是真的还是,(aAPOKER)都是真的有挂(详细透视必胜教程);致您一封信...