from keras.layers import Input, Dense from keras.models import Model
input_dim = 784
latent_dim = 64
inputs = Input(shape=(input_dim,)) encoded = Dense(256, activation='relu')(inputs) encoded = Dense(128, activation='relu')(encoded) encoded = Dense(latent_dim, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(encoded) decoded = Dense(256, activation='relu')(decoded) decoded = Dense(input_dim, activation='sigmoid')(decoded)
autoencoder = Model(inputs=inputs, outputs=decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy') autoencoder.fit(x_train