此问题是因为无法在自动配置资源 (automatic_resources) 方式下部署模型所导致的。要解决此问题,您可以通过手动指定所需资源量来更改为手动配置资源,并使用以下代码示例进行部署:
from google.cloud import automl
model_id = 'YOUR_MODEL_ID'
project_id = 'YOUR_PROJECT_ID'
region = 'YOUR_REGION'
client = automl.AutoMlClient()
# Get the full path of the model
model_full_id = client.model_path(project_id, region, model_id)
# Specify the desired deployment node
model_deployment_metadata = automl.types.ModelDeploymentMetadata(
node_count=1,
cpu_cores_per_node=1,
memory_gb_per_node=2
)
deployment = automl.types.ModelDeploymentMetadata(
image_uri="gcr.io/cloud-ml-service/disposable-tfserving-service:latest")
# Deploy the model
response = client.deploy_model(
model_full_id=model_full_id,
deployment_metadata=model_deployment_metadata,
deployment=deployment,
)
print("Model deployed. {}".format(response.deployed_model_id))
在上面的示例代码中,您需要将 YOUR_MODEL_ID
替换为模型 ID,YOUR_PROJECT_ID
替换为项目 ID,YOUR_REGION
替换为部署区域。同时通过手动配置资源来确保成功部署。
下一篇:AutoML翻译支持的语言