可以使用AWS CloudWatch中的事件规则和Lambda函数结合起来实现此需求。
首先,创建一个事件规则,该规则将在每天指定的时间触发Lambda函数。在本例中,我们将每天早上8点运行函数。
import boto3
import os
import sys
from datetime import datetime, timedelta
REGION_NAME = os.environ['AWS_REGION']
EVENT_BUS_NAME = 'default'
RULE_NAME = 'lambda-rule'
LAMBDA_FUNCTION_NAME = 'my-lambda-function'
CRON_EXPRESSION = 'cron(0 8 * * ? *)'
def create_event_rule():
print(f"Creating event rule {RULE_NAME}...")
try:
client = boto3.client('events', region_name=REGION_NAME)
response = client.put_rule(
Name=RULE_NAME,
ScheduleExpression=CRON_EXPRESSION,
State='ENABLED'
)
print(f"Event rule created: {response['RuleArn']}")
return response['RuleArn']
except Exception as e:
print(f"Failed to create event rule {RULE_NAME}: {str(e)}")
sys.exit(1)
def run_lambda(event, context):
print('Lambda function is running...')
# 业务逻辑代码
print('Lambda function has completed its execution.')
create_event_rule()
接下来,将Lambda函数更新为检查上次执行时间并确定是否超过一天。如果超过一天,就触发警报。
import boto3
import os
import sys
from datetime import datetime, timedelta
REGION_NAME = os.environ['AWS_REGION']
EVENT_BUS_NAME = 'default'
RULE_NAME = 'lambda-rule'
LAMBDA_FUNCTION_NAME = 'my-lambda-function'
CRON_EXPRESSION = 'cron(0 8 * * ? *)'
ALARM_NAME = 'lambda-alarm'
ALARM_DESCRIPTION = 'Lambda function has not been executed for more than one day.'
METRIC_NAMESPACE = 'AWS/Lambda'
METRIC_NAME = 'Invocations'
DIMENSIONS = [
{
'Name': 'FunctionName',
'Value': LAMBDA_FUNCTION_NAME