按照分类列拆分训练集和测试集
创始人
2024-08-23 22:00:16
0

在机器学习中,按照分类列拆分训练集和测试集可以使用以下方法:

  1. 使用sklearn库中的train_test_split函数:
from sklearn.model_selection import train_test_split

# 假设data是包含特征和目标变量的DataFrame,其中category是分类列
X_train, X_test, y_train, y_test = train_test_split(data.drop('target', axis=1), data['target'], test_size=0.2, stratify=data['category'])
  1. 使用pandas库根据分类列进行拆分:
import pandas as pd

# 假设data是包含特征和目标变量的DataFrame,其中category是分类列
train_data = data.groupby('category').apply(lambda x: x.sample(frac=0.8, random_state=42))
test_data = data.drop(train_data.index)
  1. 使用numpy库根据分类列进行拆分:
import numpy as np

# 假设data是包含特征和目标变量的numpy数组,其中category是分类列
unique_categories = np.unique(data[:, -1])  # 获取唯一的分类值
train_data, test_data = [], []
for category in unique_categories:
    category_data = data[data[:, -1] == category]
    np.random.shuffle(category_data)  # 随机打乱数据
    train_size = int(len(category_data) * 0.8)
    train_data.append(category_data[:train_size])
    test_data.append(category_data[train_size:])
train_data = np.vstack(train_data)
test_data = np.vstack(test_data)

以上代码示例分别使用了sklearn库的train_test_split函数、pandas库的groupby和apply方法,以及numpy库的unique函数和数组切片操作,根据分类列将数据集拆分为训练集和测试集。具体选择哪种方法取决于你使用的库和数据结构。

相关内容

热门资讯

黑科技科技(wepoke智能a... 黑科技科技(wepoke智能ai)wepower使用说明书(wepOkE)素来是真的有挂(确实有挂)...
黑科技模拟器(wepoke智能... WePoker透视辅助工具核心要点解析‌,黑科技模拟器(wepoke智能ai)wepoke是机器发牌...
黑科技脚本(wepokeai代... 您好,这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在这款游戏中打牌都...
黑科技辅助挂(wepoke真的... 黑科技辅助挂(wepoke真的有挂)wepoke 软件(wEPOKE)固有真的有挂(有挂猫腻)-哔哩...
黑科技辅助挂(wepoke黑科... 黑科技辅助挂(wepoke黑科技)wepoke软件透明挂演示(wEpOke)一直真的有挂(真的有挂)...
黑科技app(wepoke真的... 此外,数据分析德州()辅助神器app还具备辅助透视行为开挂功能,通过对客户透明挂的深入研究,你可以了...
黑科技智能ai(wepoke辅... 黑科技智能ai(wepoke辅助插件)wepoke软件透明(WEPOke)先前是有挂(果真有挂)-哔...
黑科技模拟器(wepoke透明... 黑科技模拟器(wepoke透明黑科技)wepoke德州扑克用ai代打(WEPOKE)最初存在有挂(有...
黑科技插件(wepoke辅助插... 黑科技插件(wepoke辅助插件)wepoke软件透明(WEPOke)从来是真的有挂(有挂解惑)-哔...
黑科技美元局(wepoke智能... 黑科技美元局(wepoke智能ai)wepoke辅助真的假的(wepoKE)原先真的有挂(竟然有挂)...