ArUco标记只提供相对于相机的姿态估计,也就是相机与标记之间的变换。因此,给出的翻译和旋转是相对于相机的,而不是相对于标记的某个点的。从姿态矩阵中提取旋转矩阵和平移向量后,它们是相对于相机位置的。如果要找到标记的某个特定点的位姿,可以使用标记上的固定点和相对姿态估计计算出来。
以下是使用Python和OpenCV库计算相对于标记某个特定点的位姿估计的示例代码:
import cv2
import numpy as np
# Load the ArUco dictionary and parameters
aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250)
aruco_params = cv2.aruco.DetectorParameters_create()
# Load the image and detect ArUco markers
image = cv2.imread('image.jpg')
corners, ids, rejected = cv2.aruco.detectMarkers(image, aruco_dict, parameters=aruco_params)
# Define the ID of the marker we want to calculate the pose for
target_id = 0
# Extract the rotation and translation vectors for the target marker
rvec, tvec, _ = cv2.aruco.estimatePoseSingleMarkers(corners[target_id], marker_size, camera_matrix, dist_coeffs)
# Calculate the pose of a specific point relative to the marker
point = np.array([[0, 0, 0.5]]) # define a point 50cm above the target marker
point_pose, _ = cv2.composeRT(rvec, tvec, np.zeros(3), point)
# Print the pose of the specific point relative to the marker
print('Pose of point relative to marker: ')
print(point_pose)
在这里,我们定义了目标标记的