要使用AWS Glue动态框架更新列并与爬虫架构匹配,可以按照以下步骤进行操作:
import boto3
glue_client = boto3.client('glue')
response = glue_client.create_crawler(
Name='my-crawler',
Role='my-glue-role',
DatabaseName='my-database',
Targets={'S3Targets': [{'Path': 's3://my-bucket/my-data'}]},
SchemaChangePolicy={'UpdateBehavior': 'UPDATE_IN_DATABASE', 'DeleteBehavior': 'DEPRECATE_IN_DATABASE'}
)
response = glue_client.start_crawler(
Name='my-crawler'
)
response = glue_client.create_job(
Name='my-job',
Role='my-glue-role',
Command={'Name': 'glueetl', 'ScriptLocation': 's3://my-bucket/my-script.py'},
DefaultArguments={'--job-language': 'python', '--input': 's3://my-bucket/my-data'},
GlueVersion='1.0',
Connections={'Connections': ['my-connection']},
MaxRetries=0,
Timeout=2880
)
response = glue_client.start_job_run(
JobName='my-job'
)
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from pyspark.sql import SparkSession
# 获取作业参数
args = getResolvedOptions(sys.argv, ['JOB_NAME', 'input'])
# 创建Spark会话
sc = SparkContext()
spark = SparkSession(sc)
# 读取数据
data_frame = spark.read.format('json').load(args['input'])
# 动态框架更新列
data_frame = data_frame.withColumn('new_column', lit('new_value'))
# 输出数据
data_frame.write.format('parquet').mode('overwrite').save('s3://my-bucket/my-output')
通过以上步骤,您可以使用AWS Glue动态框架更新列和与爬虫架构匹配。首先创建一个爬虫来扫描和识别数据源的模式和架构,然后创建一个作业来根据爬虫的输出进行动态框架更新。在作业脚本中,您可以使用相应的代码来更新列并输出数据。