要使用AWS Glue Dynamic Frame执行JDBC更新操作,您可以按照以下步骤进行操作:
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from pyspark.sql import SQLContext
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
sqlContext = SQLContext(spark)
jdbc_url = "jdbc:mysql://your_mysql_host:3306/database_name"
jdbc_username = "your_username"
jdbc_password = "your_password"
jdbc_driver = "com.mysql.jdbc.Driver"
table_name = "your_table_name"
datasource = glueContext.create_dynamic_frame.from_catalog(database = "your_database", table_name = "your_table")
dataframe = datasource.toDF()
# Perform necessary transformations on dataframe
# ...
dataframe.write.format("jdbc").options(
url=jdbc_url,
driver=jdbc_driver,
dbtable=table_name,
user=jdbc_username,
password=jdbc_password
).mode("append").save()
请注意,您需要将代码中的"your_mysql_host"、"database_name"、"your_username"、"your_password"和"your_table_name"替换为实际的数据库连接信息和目标表信息。同时,根据您的需求进行必要的转换和处理操作。
希望这个示例能够帮助您执行AWS Glue Dynamic Frame到JDBC的更新操作。