贝尔曼-福特算法是一种用于解决单源最短路径问题的动态规划算法。当给定的图中存在边的权重为负数时,贝尔曼-福特算法仍然可以正确地找到最短路径。在带有容量约束的问题中,除了每条边都有权重外,还有一个容量限制,即每条边都有一个最大容量,超过容量限制的边不能被经过。
下面是一个使用Python实现的带有容量约束的贝尔曼-福特算法的代码示例:
# 定义图的数据结构
class Edge:
def __init__(self, source, destination, weight, capacity):
self.source = source
self.destination = destination
self.weight = weight
self.capacity = capacity
# 贝尔曼-福特算法的实现
def bellman_ford(graph, source):
# 初始化距离数组
distances = {node: float('inf') for node in graph}
distances[source] = 0
# 迭代更新距离数组
for _ in range(len(graph) - 1):
for edge in graph:
if distances[edge.source] + edge.weight < distances[edge.destination] and distances[edge.source] + edge.weight <= edge.capacity:
distances[edge.destination] = distances[edge.source] + edge.weight
# 检测负权重环
for edge in graph:
if distances[edge.source] + edge.weight < distances[edge.destination] and distances[edge.source] + edge.weight <= edge.capacity:
raise Exception("图中存在负权重环,无法计算最短路径")
return distances
使用示例:
# 创建图
edges = [
Edge('A', 'B', -1, 5),
Edge('A', 'C', 4, 10),
Edge('B', 'C', 3, 2),
Edge('B', 'D', 2, 3),
Edge('B', 'E', 2, 1),
Edge('D', 'C', 5, 2),
Edge('D', 'B', 1, 1),
Edge('E', 'D', -3, 1)
]
graph = set()
for edge in edges:
graph.add(edge)
# 运行贝尔曼-福特算法
distances = bellman_ford(graph, 'A')
# 打印最短路径
for node, distance in distances.items():
print(f'到达节点 {node} 的最短路径距离为: {distance}')
运行上述代码,将会输出每个节点到源节点A的最短路径距离。如果图中存在负权重环,则会抛出异常。
下一篇:贝尔曼方程