要在本地运行Python StableDiffusionXL并输出噪声图像,可以按照以下步骤进行:
pip install StableDiffusionXL
import torch
from torchvision.utils import save_image
from StableDiffusionXL.diffusion import gaussian_diffusion
from StableDiffusionXL.utils import create_named_schedule
model_path = "path/to/pretrained/model.pt"
output_path = "path/to/output/image.png"
model = torch.load(model_path)
batch_size = 1
image_size = 256
num_channels = 3
input_data = torch.randn(batch_size, num_channels, image_size, image_size)
diffusion_steps = 1000
beta_schedule = create_named_schedule("linear", start=0.0001, end=0.02, num_diffusion_timesteps=diffusion_steps)
output_image = gaussian_diffusion(input_data, model, beta_schedule)
save_image(output_image, output_path)
完整的代码示例如下所示:
import torch
from torchvision.utils import save_image
from StableDiffusionXL.diffusion import gaussian_diffusion
from StableDiffusionXL.utils import create_named_schedule
# 设置模型参数和路径
model_path = "path/to/pretrained/model.pt"
output_path = "path/to/output/image.png"
# 加载预训练模型
model = torch.load(model_path)
# 准备输入数据
batch_size = 1
image_size = 256
num_channels = 3
input_data = torch.randn(batch_size, num_channels, image_size, image_size)
# 设置扩散参数和时间表
diffusion_steps = 1000
beta_schedule = create_named_schedule("linear", start=0.0001, end=0.02, num_diffusion_timesteps=diffusion_steps)
# 运行扩散过程
output_image = gaussian_diffusion(input_data, model, beta_schedule)
# 保存输出图像
save_image(output_image, output_path)
请根据实际情况修改代码中的路径、模型参数和其他参数。运行代码后,将在指定的输出路径中生成噪声图像。