使用OpenCV中的图像分割函数,可以实现将原始图像分割为不同的区域,并生成与原始图像大小相同的掩膜图像。下面是一个示例代码:
import cv2
# 读取原始图像
img = cv2.imread("test.jpg")
# 使用分水岭算法进行图像分割
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
sure_bg = cv2.dilate(opening, kernel, iterations=3)
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)
ret, markers = cv2.connectedComponents(sure_fg)
markers = markers + 1
markers[unknown==255] = 0
markers = cv2.watershed(img, markers)
img[markers==-1] = [255,0,0]
# 生成掩膜图像
mask = np.zeros_like(gray)
mask[markers!=-1] = 255
# 显示图像和掩膜图像
cv2.imshow("Original Image", img)
cv2.imshow("Mask Image", mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
此代码使用了分水岭算法进行图像分割,并生成与原始图像大小相同的掩膜图像。其中,生成的掩膜图像将不同的区域标记为白色,其余区域为黑色。