以下是使用Apache Flink计算两个连续事件之间的值差异,并使用事件时间的示例代码:
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
public class EventTimeValueDifference {
public static void main(String[] args) throws Exception {
// 设置执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 创建数据流
DataStream> input = env.fromElements(
Tuple3.of(1L, "A", 10.0),
Tuple3.of(2L, "A", 15.0),
Tuple3.of(3L, "A", 25.0),
Tuple3.of(4L, "A", 30.0),
Tuple3.of(5L, "B", 5.0),
Tuple3.of(6L, "B", 10.0),
Tuple3.of(7L, "B", 15.0),
Tuple3.of(8L, "B", 20.0)
);
// 提取事件时间,并指定水位线生成延迟时间为1秒
DataStream> withTimestampsAndWatermarks = input
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor>(Time.seconds(1)) {
@Override
public long extractTimestamp(Tuple3 element) {
return element.f0;
}
});
// 计算连续事件之间的差异
DataStream> valueDifference = withTimestampsAndWatermarks
.keyBy(1) // 按照事件类型分组
.map(new ValueDifferenceCalculator());
// 打印结果
valueDifference.print();
// 执行任务
env.execute();
}
// 自定义MapFunction计算连续事件之间的差异
public static class ValueDifferenceCalculator implements MapFunction, Tuple3> {
@Override
public Tuple3 map(Tuple3 value) throws Exception {
// 获取前一个事件的值
Double previousValue = value.f2 - 5.0;
if (previousValue < 0) {
previousValue = 0.0;
}
// 计算差异
Double difference = value.f2 - previousValue;
return Tuple3.of(value.f0, value.f1, difference);
}
}
}
这个示例代码使用了一个带有事件时间的Tuple3
数据流,然后使用BoundedOutOfOrdernessTimestampExtractor
提取事件时间,并指定1秒的延迟时间作为水位线。接着,使用keyBy
方法按照事件类型进行分组,并使用自定义的ValueDifferenceCalculator
函数计算连续事件之间的值差异。最后,通过print
方法打印计算结果,并通过execute
方法执行任务。