要启用连接排序的 Apache Flink 代码示例,可以按照以下步骤进行操作:
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoGroupFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream stream1 = env.addSource(...);
DataStream stream2 = env.addSource(...);
stream1 = stream1.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(10)) {
@Override
public long extractTimestamp(Event event) {
return event.getTimestamp();
}
});
stream2 = stream2.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(10)) {
@Override
public long extractTimestamp(Event event) {
return event.getTimestamp();
}
});
DataStream connectedStream = stream1.coGroup(stream2)
.where(new KeySelector() {
@Override
public String getKey(Event event) {
return event.getKey();
}
})
.equalTo(new KeySelector() {
@Override
public String getKey(Event event) {
return event.getKey();
}
})
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.apply(new CoGroupFunction() {
@Override
public void coGroup(Iterable stream1Events, Iterable stream2Events, Collector out) {
// 在这里实现连接操作的逻辑
}
});
public class Result {
// 定义连接后的结果数据结构
}
env.execute("Enable Connected Sorting Example");
请注意,上述代码示例中的 Event、Result 类型需要根据实际情况进行定义和调整。此外,连接操作的逻辑需要根据具体的需求进行实现。