使用ARKit和ResNet50进行图像识别可以通过以下步骤完成:
import ARKit
import Vision
import CoreML
ar_view = ARKit.ARView()
image_analysis_request = VNCoreMLRequest(model=ResNet50().model, completionHandler=handle_image_analysis)
def handle_image_analysis(request, error):
if error:
print("图像分析错误:", error)
return
observations = request.results
if len(observations) == 0:
print("未找到任何物体")
else:
best_observation = observations[0]
recognized_object = best_observation.identifier
confidence = best_observation.confidence
print("识别物体:", recognized_object, "置信度:", confidence)
@ar_view.on(ARKit.FrameReceived)
def handle_camera_frame(frame):
image = frame.captured_image
image_request_handler = VNImageRequestHandler(image=image, options={}, completionHandler=image_analysis_request_handler)
try:
image_request_handler.perform([image_analysis_request])
except Exception as e:
print("图像请求处理错误:", e)
ar_view.start()
完整的代码示例:
import ARKit
import Vision
import CoreML
ar_view = ARKit.ARView()
image_analysis_request = VNCoreMLRequest(model=ResNet50().model, completionHandler=handle_image_analysis)
def handle_image_analysis(request, error):
if error:
print("图像分析错误:", error)
return
observations = request.results
if len(observations) == 0:
print("未找到任何物体")
else:
best_observation = observations[0]
recognized_object = best_observation.identifier
confidence = best_observation.confidence
print("识别物体:", recognized_object, "置信度:", confidence)
@ar_view.on(ARKit.FrameReceived)
def handle_camera_frame(frame):
image = frame.captured_image
image_request_handler = VNImageRequestHandler(image=image, options={}, completionHandler=image_analysis_request_handler)
try:
image_request_handler.perform([image_analysis_request])
except Exception as e:
print("图像请求处理错误:", e)
ar_view.start()
请注意,上述代码示例仅为了说明概念,可能需要根据您的具体需求进行调整和完善。